Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees

نویسندگان

  • Bin Liu
  • Heinz Rennenberg
  • Jürgen Kreuzwieser
  • Manuel Reigosa
چکیده

The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia.

The molecular and physiological responses of gray poplar (Populus x canescens) following root hypoxia were studied in roots and leaves using transcript and metabolite profiling. The results indicate that there were changes in metabolite levels in both organs, but changes in transcript abundance were restricted to the roots. In roots, starch and sucrose degradation were altered under hypoxia, an...

متن کامل

Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress.

Phytoremediation potentials of four poplar lines, Populus nigra (N-SL clone), Populus canescens, and two transgenic P. canescens clones were investigated using in vitro leaf discs cultures. The transgenic poplars overexpressed a bacterial gene encoding gamma-glutamylcysteine synthetase in the cytosol (11ggs) or in the chlopoplasts (6LgI), and therefore, they contained an elevated level of gluta...

متن کامل

Poplar wood rays are involved in seasonal remodeling of tree physiology.

Understanding seasonality and longevity is a major challenge in tree biology. In woody species, growth phases and dormancy follow one another consecutively. In the oldest living individuals, the annual cycle may run for more than 1,000 years. So far, however, not much is known about the processes triggering reactivation from dormancy. In this study, we focused on wood rays, which are known to p...

متن کامل

Contribution of different carbon sources to isoprene biosynthesis in poplar leaves.

This study was performed to test if alternative carbon sources besides recently photosynthetically fixed CO2 are used for isoprene formation in the leaves of young poplar (Populus x canescens) trees. In a 13CO2 atmosphere under steady state conditions, only about 75% of isoprene became 13C labeled within minutes. A considerable part of the unlabeled carbon may be derived from xylem transported ...

متن کامل

Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones

The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015